Flow of Deformable Droplets: Discontinuous Shear Thinning and Velocity Oscillations
نویسندگان
چکیده
منابع مشابه
Turbulent pipe flow of shear-thinning fluids
Direct numerical simulation of the weakly turbulent flow of non-Newtonian fluids is undertaken for two different generalised Newtonian rheology models using a spectral element-Fourier method. Results for a power law (shear-thinning) rheology agree well with experimentally determined logarithmic layer correlations and with other previously published experimental work. As the flow index becomes s...
متن کاملThe Effect of Shear Thinning Behaviour on Turbulent Pipe Flow
Direct numerical simulation of the weakly turbulent flow of non-Newtonian fluids is undertaken for two different generalised Newtonian rheology models using a spectral element--Fourier method. Results for a power law (shearthinning) rheology agree well with experimentally determined logarithmic layer correlations and with other previously published experimental work. As the flow index becomes s...
متن کاملInfluence of surface viscosity on droplets in shear flow
The behaviour of a single droplet in an immiscible external fluid, submitted to shear flow is investigated using numerical simulations. The surface of the droplet is modelled by a Boussinesq–Scriven constitutive law involving the interfacial viscosities and a constant surface tension. A numerical method using Loop subdivision surfaces to represent droplet interface is introduced. This method co...
متن کاملVortex shedding in cylinder flow of shear-thinning fluids I. Identification and demarcation of flow regimes
An experimental study on the flow of non-Newtonian fluids around a cylinder was undertaken to identify and delimit the various shedding flow regimes as a function of adequate non-dimensional numbers. The measurements of vortex shedding frequency and formation length (lf ) were carried out by laser-Doppler anemometry in Newtonian fluids and in aqueous polymer solutions of CMC and tylose. These w...
متن کاملDynamics of a deformable active particle under shear flow.
The motion of a deformable active particle in linear shear flow is explored theoretically. Based on symmetry considerations, we propose coupled nonlinear dynamical equations for the particle position, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear flow as well as active spinning motions, are taken into account. Our equations reduce to known model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2017
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.119.208002